Create mqtt_pump_focus_image_v2.py
This commit is contained in:
parent
9f1609ded4
commit
86e783ceee
389
scripts/mqtt_pump_focus_image_v2.py
Normal file
389
scripts/mqtt_pump_focus_image_v2.py
Normal file
|
@ -0,0 +1,389 @@
|
||||||
|
import paho.mqtt.client as mqtt
|
||||||
|
from picamera import PiCamera
|
||||||
|
from datetime import datetime, timedelta
|
||||||
|
from adafruit_motor import stepper
|
||||||
|
from adafruit_motorkit import MotorKit
|
||||||
|
from time import sleep
|
||||||
|
import json
|
||||||
|
|
||||||
|
import os
|
||||||
|
import subprocess
|
||||||
|
|
||||||
|
from skimage.util import img_as_ubyte
|
||||||
|
|
||||||
|
from morphocut import Call
|
||||||
|
from morphocut.contrib.ecotaxa import EcotaxaWriter
|
||||||
|
from morphocut.contrib.zooprocess import CalculateZooProcessFeatures
|
||||||
|
from morphocut.core import Pipeline
|
||||||
|
from morphocut.file import Find
|
||||||
|
from morphocut.image import (
|
||||||
|
ExtractROI,
|
||||||
|
FindRegions,
|
||||||
|
ImageReader,
|
||||||
|
ImageWriter,
|
||||||
|
RescaleIntensity,
|
||||||
|
RGB2Gray,
|
||||||
|
)
|
||||||
|
|
||||||
|
from morphocut.stat import RunningMedian
|
||||||
|
from morphocut.str import Format
|
||||||
|
from morphocut.stream import TQDM, Enumerate, FilterVariables
|
||||||
|
|
||||||
|
from skimage.feature import canny
|
||||||
|
from skimage.color import rgb2gray, label2rgb
|
||||||
|
from skimage.morphology import disk
|
||||||
|
from skimage.morphology import erosion, dilation, closing
|
||||||
|
from skimage.measure import label, regionprops
|
||||||
|
import cv2, shutil
|
||||||
|
|
||||||
|
import smbus
|
||||||
|
#fan
|
||||||
|
bus = smbus.SMBus(1)
|
||||||
|
################################################################################
|
||||||
|
kit = MotorKit()
|
||||||
|
pump_stepper = kit.stepper1
|
||||||
|
pump_stepper.release()
|
||||||
|
focus_stepper = kit.stepper2
|
||||||
|
focus_stepper.release()
|
||||||
|
|
||||||
|
################################################################################
|
||||||
|
|
||||||
|
camera = PiCamera()
|
||||||
|
camera.resolution = (3280, 2464)
|
||||||
|
camera.iso = 60
|
||||||
|
camera.shutter_speed = 500
|
||||||
|
camera.exposure_mode = 'fixedfps'
|
||||||
|
|
||||||
|
################################################################################
|
||||||
|
message = ''
|
||||||
|
topic = ''
|
||||||
|
count=''
|
||||||
|
|
||||||
|
################################################################################
|
||||||
|
|
||||||
|
def on_connect(client, userdata, flags, rc):
|
||||||
|
print("Connected! - " + str(rc))
|
||||||
|
client.subscribe("actuator/#")
|
||||||
|
rgb(0,255,0)
|
||||||
|
def on_subscribe(client, obj, mid, granted_qos):
|
||||||
|
print("Subscribed! - "+str(mid)+" "+str(granted_qos))
|
||||||
|
|
||||||
|
def on_message(client, userdata, msg):
|
||||||
|
print(msg.topic+" "+str(msg.qos)+" "+str(msg.payload))
|
||||||
|
global message
|
||||||
|
global topic
|
||||||
|
global count
|
||||||
|
message=str(msg.payload.decode())
|
||||||
|
topic=msg.topic.split("/")[1]
|
||||||
|
count=0
|
||||||
|
|
||||||
|
def on_log(client, obj, level, string):
|
||||||
|
print(string)
|
||||||
|
|
||||||
|
def rgb(R,G,B):
|
||||||
|
bus.write_byte_data(0x0d, 0x00, 0)
|
||||||
|
bus.write_byte_data(0x0d, 0x01, R)
|
||||||
|
bus.write_byte_data(0x0d, 0x02, G)
|
||||||
|
bus.write_byte_data(0x0d, 0x03, B)
|
||||||
|
|
||||||
|
bus.write_byte_data(0x0d, 0x00, 1)
|
||||||
|
bus.write_byte_data(0x0d, 0x01, R)
|
||||||
|
bus.write_byte_data(0x0d, 0x02, G)
|
||||||
|
bus.write_byte_data(0x0d, 0x03, B)
|
||||||
|
|
||||||
|
bus.write_byte_data(0x0d, 0x00, 2)
|
||||||
|
bus.write_byte_data(0x0d, 0x01, R)
|
||||||
|
bus.write_byte_data(0x0d, 0x02, G)
|
||||||
|
bus.write_byte_data(0x0d, 0x03, B)
|
||||||
|
cmd="i2cdetect -y 1"
|
||||||
|
subprocess.Popen(cmd.split(),stdout=subprocess.PIPE)
|
||||||
|
|
||||||
|
################################################################################
|
||||||
|
client = mqtt.Client()
|
||||||
|
client.connect("127.0.0.1",1883,60)
|
||||||
|
client.on_connect = on_connect
|
||||||
|
client.on_subscribe = on_subscribe
|
||||||
|
client.on_message = on_message
|
||||||
|
client.on_log = on_log
|
||||||
|
client.loop_start()
|
||||||
|
|
||||||
|
|
||||||
|
local_metadata = {
|
||||||
|
"process_datetime": datetime.now(),
|
||||||
|
"acq_camera_resolution" : camera.resolution,
|
||||||
|
"acq_camera_iso" : camera.iso,
|
||||||
|
"acq_camera_shutter_speed" : camera.shutter_speed
|
||||||
|
}
|
||||||
|
|
||||||
|
config_txt = open('/home/pi/PlanktonScope/config.txt','r')
|
||||||
|
node_red_metadata = json.loads(config_txt.read())
|
||||||
|
|
||||||
|
global_metadata = {**local_metadata, **node_red_metadata}
|
||||||
|
|
||||||
|
archive_fn = os.path.join("/home/pi/PlanktonScope/","export", "ecotaxa_export.zip")
|
||||||
|
# Define processing pipeline
|
||||||
|
with Pipeline() as p:
|
||||||
|
# Recursively find .jpg files in import_path.
|
||||||
|
# Sort to get consective frames.
|
||||||
|
abs_path = Find("/home/pi/PlanktonScope/tmp", [".jpg"], sort=True, verbose=True)
|
||||||
|
|
||||||
|
# Extract name from abs_path
|
||||||
|
name = Call(lambda p: os.path.splitext(os.path.basename(p))[0], abs_path)
|
||||||
|
|
||||||
|
Call(rgb, 0,255,0)
|
||||||
|
# Read image
|
||||||
|
img = ImageReader(abs_path)
|
||||||
|
|
||||||
|
# Show progress bar for frames
|
||||||
|
#TQDM(Format("Frame {name}", name=name))
|
||||||
|
|
||||||
|
# Apply running median to approximate the background image
|
||||||
|
flat_field = RunningMedian(img, 5)
|
||||||
|
|
||||||
|
# Correct image
|
||||||
|
img = img / flat_field
|
||||||
|
|
||||||
|
# Rescale intensities and convert to uint8 to speed up calculations
|
||||||
|
img = RescaleIntensity(img, in_range=(0, 1.1), dtype="uint8")
|
||||||
|
|
||||||
|
# frame_fn = Format(os.path.join("/home/pi/PlanktonScope/tmp","CLEAN", "{name}.jpg"), name=name)
|
||||||
|
|
||||||
|
# ImageWriter(frame_fn, img)
|
||||||
|
|
||||||
|
# Convert image to uint8 gray
|
||||||
|
img_gray = RGB2Gray(img)
|
||||||
|
|
||||||
|
# ?
|
||||||
|
img_gray = Call(img_as_ubyte, img_gray)
|
||||||
|
|
||||||
|
#Canny edge detection
|
||||||
|
img_canny = Call(cv2.Canny, img_gray, 50,100)
|
||||||
|
|
||||||
|
#Dilate
|
||||||
|
kernel = Call(cv2.getStructuringElement, cv2.MORPH_ELLIPSE, (15, 15))
|
||||||
|
img_dilate = Call(cv2.dilate, img_canny, kernel, iterations=2)
|
||||||
|
|
||||||
|
#Close
|
||||||
|
kernel = Call(cv2.getStructuringElement, cv2.MORPH_ELLIPSE, (5, 5))
|
||||||
|
img_close = Call(cv2.morphologyEx, img_dilate, cv2.MORPH_CLOSE, kernel, iterations=1)
|
||||||
|
|
||||||
|
#Erode
|
||||||
|
kernel = Call(cv2.getStructuringElement, cv2.MORPH_ELLIPSE, (15, 15))
|
||||||
|
mask = Call(cv2.erode, img_close, kernel, iterations=2)
|
||||||
|
|
||||||
|
# Find objects
|
||||||
|
regionprops = FindRegions(
|
||||||
|
mask, img_gray, min_area=1000, padding=10, warn_empty=name
|
||||||
|
)
|
||||||
|
|
||||||
|
Call(rgb, 255,0,255)
|
||||||
|
# For an object, extract a vignette/ROI from the image
|
||||||
|
roi_orig = ExtractROI(img, regionprops, bg_color=255)
|
||||||
|
|
||||||
|
# Generate an object identifier
|
||||||
|
i = Enumerate()
|
||||||
|
#Call(print,i)
|
||||||
|
|
||||||
|
object_id = Format("{name}_{i:d}", name=name, i=i)
|
||||||
|
#Call(print,object_id)
|
||||||
|
|
||||||
|
object_fn = Format(os.path.join("/home/pi/PlanktonScope/","OBJECTS", "{name}.jpg"), name=object_id)
|
||||||
|
|
||||||
|
ImageWriter(object_fn, roi_orig)
|
||||||
|
|
||||||
|
# Calculate features. The calculated features are added to the global_metadata.
|
||||||
|
# Returns a Variable representing a dict for every object in the stream.
|
||||||
|
meta = CalculateZooProcessFeatures(
|
||||||
|
regionprops, prefix="object_", meta=global_metadata
|
||||||
|
)
|
||||||
|
|
||||||
|
# json_meta = Call(json.dumps,meta, sort_keys=True, default=str)
|
||||||
|
|
||||||
|
# Call(client.publish, "receiver/segmentation/metric", json_meta)
|
||||||
|
|
||||||
|
# Add object_id to the metadata dictionary
|
||||||
|
meta["object_id"] = object_id
|
||||||
|
|
||||||
|
# Generate object filenames
|
||||||
|
orig_fn = Format("{object_id}.jpg", object_id=object_id)
|
||||||
|
|
||||||
|
# Write objects to an EcoTaxa archive:
|
||||||
|
# roi image in original color, roi image in grayscale, metadata associated with each object
|
||||||
|
EcotaxaWriter(archive_fn, (orig_fn, roi_orig), meta)
|
||||||
|
|
||||||
|
# Progress bar for objects
|
||||||
|
TQDM(Format("Object {object_id}", object_id=object_id))
|
||||||
|
|
||||||
|
# Call(client.publish, "receiver/segmentation/object_id", object_id)
|
||||||
|
|
||||||
|
|
||||||
|
camera.start_preview(fullscreen=False, window = (160, 0, 640, 480))
|
||||||
|
################################################################################
|
||||||
|
while True:
|
||||||
|
|
||||||
|
################################################################################
|
||||||
|
if (topic=="pump"):
|
||||||
|
rgb(0,0,255)
|
||||||
|
direction=message.split(" ")[0]
|
||||||
|
delay=float(message.split(" ")[1])
|
||||||
|
nb_step=int(message.split(" ")[2])
|
||||||
|
|
||||||
|
client.publish("receiver/pump", "Start");
|
||||||
|
|
||||||
|
|
||||||
|
while True:
|
||||||
|
|
||||||
|
if direction == "BACKWARD":
|
||||||
|
direction=stepper.BACKWARD
|
||||||
|
if direction == "FORWARD":
|
||||||
|
direction=stepper.FORWARD
|
||||||
|
count+=1
|
||||||
|
# print(count,nb_step)
|
||||||
|
pump_stepper.onestep(direction=direction, style=stepper.DOUBLE)
|
||||||
|
sleep(delay)
|
||||||
|
|
||||||
|
if topic!="pump":
|
||||||
|
pump_stepper.release()
|
||||||
|
print("The pump has been interrompted.")
|
||||||
|
client.publish("receiver/pump", "Interrompted");
|
||||||
|
rgb(0,255,0)
|
||||||
|
break
|
||||||
|
|
||||||
|
if count>nb_step:
|
||||||
|
pump_stepper.release()
|
||||||
|
print("The pumping is done.")
|
||||||
|
topic="wait"
|
||||||
|
client.publish("receiver/pump", "Done");
|
||||||
|
rgb(0,255,0)
|
||||||
|
break
|
||||||
|
|
||||||
|
################################################################################
|
||||||
|
|
||||||
|
elif (topic=="focus"):
|
||||||
|
|
||||||
|
rgb(255,255,0)
|
||||||
|
direction=message.split(" ")[0]
|
||||||
|
nb_step=int(message.split(" ")[1])
|
||||||
|
client.publish("receiver/focus", "Start");
|
||||||
|
|
||||||
|
|
||||||
|
while True:
|
||||||
|
|
||||||
|
if direction == "FORWARD":
|
||||||
|
direction=stepper.FORWARD
|
||||||
|
if direction == "BACKWARD":
|
||||||
|
direction=stepper.BACKWARD
|
||||||
|
count+=1
|
||||||
|
# print(count,nb_step)
|
||||||
|
focus_stepper.onestep(direction=direction, style=stepper.MICROSTEP)
|
||||||
|
|
||||||
|
if topic!="focus":
|
||||||
|
focus_stepper.release()
|
||||||
|
print("The stage has been interrompted.")
|
||||||
|
client.publish("receiver/focus", "Interrompted");
|
||||||
|
rgb(0,255,0)
|
||||||
|
break
|
||||||
|
|
||||||
|
if count>nb_step:
|
||||||
|
focus_stepper.release()
|
||||||
|
print("The focusing is done.")
|
||||||
|
topic="wait"
|
||||||
|
client.publish("receiver/focus", "Done");
|
||||||
|
rgb(0,255,0)
|
||||||
|
break
|
||||||
|
|
||||||
|
################################################################################
|
||||||
|
|
||||||
|
elif (topic=="image"):
|
||||||
|
|
||||||
|
|
||||||
|
sleep_before=int(message.split(" ")[0])
|
||||||
|
|
||||||
|
nb_step=int(message.split(" ")[1])
|
||||||
|
|
||||||
|
path=str(message.split(" ")[2])
|
||||||
|
|
||||||
|
nb_frame=int(message.split(" ")[3])
|
||||||
|
|
||||||
|
sleep_during=int(message.split(" ")[4])
|
||||||
|
|
||||||
|
#sleep a duration before to start
|
||||||
|
sleep(sleep_before)
|
||||||
|
|
||||||
|
client.publish("receiver/image", "Start");
|
||||||
|
|
||||||
|
#flushing before to begin
|
||||||
|
|
||||||
|
rgb(0,0,255)
|
||||||
|
for i in range(nb_step):
|
||||||
|
pump_stepper.onestep(direction=stepper.FORWARD, style=stepper.DOUBLE)
|
||||||
|
sleep(0.01)
|
||||||
|
rgb(0,255,0)
|
||||||
|
|
||||||
|
while True:
|
||||||
|
|
||||||
|
count+=1
|
||||||
|
# print(count,nb_frame)
|
||||||
|
|
||||||
|
filename = os.path.join("/home/pi/PlanktonScope/tmp",datetime.now().strftime("%M_%S_%f")+".jpg")
|
||||||
|
|
||||||
|
rgb(0,255,255)
|
||||||
|
camera.capture(filename)
|
||||||
|
rgb(0,255,0)
|
||||||
|
|
||||||
|
client.publish("receiver/image", datetime.now().strftime("%M_%S_%f")+".jpg has been imaged.");
|
||||||
|
|
||||||
|
rgb(0,0,255)
|
||||||
|
for i in range(10):
|
||||||
|
pump_stepper.onestep(direction=stepper.FORWARD, style=stepper.DOUBLE)
|
||||||
|
sleep(0.01)
|
||||||
|
sleep(0.5)
|
||||||
|
rgb(0,255,0)
|
||||||
|
|
||||||
|
if(count>nb_frame):
|
||||||
|
|
||||||
|
# camera.stop_preview()
|
||||||
|
|
||||||
|
client.publish("receiver/image", "Completed");
|
||||||
|
# Meta data that is added to every object
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
client.publish("receiver/segmentation", "Start");
|
||||||
|
# Define processing pipeline
|
||||||
|
|
||||||
|
p.run()
|
||||||
|
|
||||||
|
#remove directory
|
||||||
|
#shutil.rmtree(import_path)
|
||||||
|
|
||||||
|
client.publish("receiver/segmentation", "Completed");
|
||||||
|
|
||||||
|
command = os.popen("rm -rf /home/pi/PlanktonScope/tmp/*.jpg")
|
||||||
|
|
||||||
|
rgb(255,255,255)
|
||||||
|
sleep(sleep_during)
|
||||||
|
rgb(0,255,0)
|
||||||
|
|
||||||
|
|
||||||
|
rgb(0,0,255)
|
||||||
|
for i in range(nb_step):
|
||||||
|
pump_stepper.onestep(direction=stepper.FORWARD, style=stepper.DOUBLE)
|
||||||
|
sleep(0.01)
|
||||||
|
rgb(0,255,0)
|
||||||
|
|
||||||
|
count=0
|
||||||
|
|
||||||
|
if topic!="image":
|
||||||
|
pump_stepper.release()
|
||||||
|
print("The imaging has been interrompted.")
|
||||||
|
client.publish("receiver/image", "Interrompted");
|
||||||
|
rgb(0,255,0)
|
||||||
|
count=0
|
||||||
|
break
|
||||||
|
|
||||||
|
else:
|
||||||
|
# print("Waiting")
|
||||||
|
sleep(1)
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue