planktoscope/software/planktoscope-backend/src/planktoscope_backend/segmenter/__init__.py

1042 lines
42 KiB
Python
Raw Normal View History

################################################################################
# Practical Libraries
################################################################################
# Logger library compatible with multiprocessing
from loguru import logger
# Library to get date and time for folder name and filename
import datetime
# Library to be able to sleep for a given duration
import time
# Libraries manipulate json format, execute bash commands
import json, shutil, os
# Library for starting processes
import multiprocessing
import io
import threading
import functools
import select
# Basic planktoscope libraries
import planktoscope.mqtt
import planktoscope.segmenter.operations
import planktoscope.segmenter.encoder
import planktoscope.segmenter.streamer
import planktoscope.segmenter.ecotaxa
################################################################################
# Morphocut Libraries
################################################################################
# import morphocut
# import morphocut.file
# import morphocut.image
# import morphocut.stat
# import morphocut.stream
# import morphocut.str
# import morphocut.contrib.zooprocess
################################################################################
# Other image processing Libraries
################################################################################
import skimage.util
import skimage.transform
import skimage.measure
import skimage.exposure
import cv2
import scipy.stats
import numpy as np
import PIL.Image
import math
logger.info("planktoscope.segmenter is loaded")
################################################################################
# Main Segmenter class
################################################################################
class SegmenterProcess(multiprocessing.Process):
"""This class contains the main definitions for the segmenter of the PlanktoScope"""
@logger.catch
def __init__(self, event, data_path):
"""Initialize the Segmenter class
Args:
event (multiprocessing.Event): shutdown event
"""
super(SegmenterProcess, self).__init__(name="segmenter")
logger.info("planktoscope.segmenter is initialising")
self.stop_event = event
self.__pipe = None
self.segmenter_client = None
# Where captured images are saved
self.__img_path = os.path.join(data_path, "img/")
# To save export folders
self.__export_path = os.path.join(data_path, "export/")
# To save objects to export
self.__objects_root = os.path.join(data_path, "objects/")
# To save debug masks
self.__debug_objects_root = os.path.join(data_path, "clean/")
self.__ecotaxa_path = os.path.join(self.__export_path, "ecotaxa")
self.__global_metadata = None
# path for current folder being segmented
self.__working_path = ""
# combination of self.__objects_root and actual sample folder name
self.__working_obj_path = ""
# combination of self.__ecotaxa_path and actual sample folder name
self.__working_ecotaxa_path = ""
# combination of self.__debug_objects_root and actual sample folder name
self.__working_debug_path = ""
self.__archive_fn = ""
2021-10-18 12:44:47 +02:00
self.__process_id = ""
self.__flat = None
self.__mask_array = None
self.__mask_to_remove = None
self.__save_debug_img = True
# create all base path
for path in [
self.__ecotaxa_path,
self.__objects_root,
self.__debug_objects_root,
]:
if not os.path.exists(path):
# create the path!
os.makedirs(path)
logger.success("planktoscope.segmenter is initialised and ready to go!")
def _find_files(self, path, extension):
for _, _, filenames in os.walk(path, topdown=True):
if filenames:
filenames = sorted(filenames)
return [fn for fn in filenames if fn.endswith(extension)]
def _manual_median(self, images_array):
images_array.sort(axis=0)
return images_array[int(len(images_array) / 2)]
def _save_image(self, image, path):
PIL.Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)).save(path)
def _save_mask(self, mask, path):
PIL.Image.fromarray(mask).save(path)
def _calculate_flat(self, images_list, images_number, images_root_path):
"""Calculate a flat image from given list and images number
Args:
images_list (string): list of filenames to calculate a flat for
images_number (int): image number to use, must be odd!
images_root_path (string): path where to find the images
Returns:
image: median of previously sent images
"""
# TODO make this calculation optional if a flat already exists
# check to make sure images_number is odd
if not images_number % 2:
images_number -= 1
# make sure image number is smaller than image list
if images_number > len(images_list):
logger.error(
"The image number can't be bigger than the lenght of the provided list!"
)
images_number = len(images_list)
logger.debug("Opening images")
# start = time.monotonic()
# Read images and build array
images_array = np.array(
[
cv2.imread(
os.path.join(images_root_path, images_list[i]),
)
for i in range(images_number)
]
)
# logger.debug(time.monotonic() - start)
logger.success("Opening images")
logger.info("Manual median calc")
# start = time.monotonic()
self.__flat = self._manual_median(images_array)
# self.__flat = _numpy_median(images_array)
# logger.debug(time.monotonic() - start)
logger.success("Manual median calc")
# cv2.imshow("flat_color", self.__flat.astype("uint8"))
# cv2.waitKey(0)
return self.__flat
def _open_and_apply_flat(self, filepath, flat_ref):
logger.info("Opening images")
start = time.monotonic()
# logger.debug(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss)
# Read images
image = cv2.imread(filepath)
# print(image)
# logger.debug(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss)
# logger.debug(time.monotonic() - start)
logger.success("Opening images")
logger.info("Flat calc")
# start = time.monotonic()
# logger.debug(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss)
# Correct image
image = image / self.__flat
# adding one black pixel top left
image[0][0] = [0, 0, 0]
# logger.debug(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss)
# logger.debug(time.monotonic() - start)
image = skimage.exposure.rescale_intensity(
image, in_range=(0, 1.04), out_range="uint8"
)
# logger.debug(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss)
logger.debug(time.monotonic() - start)
logger.success("Flat calc")
# cv2.imshow("img", img.astype("uint8"))
# cv2.waitKey(0)
if self.__save_debug_img:
self._save_image(
image,
os.path.join(self.__working_debug_path, "cleaned_image.jpg"),
)
return image
def _create_mask(self, img, debug_saving_path):
logger.info("Starting the mask creation")
pipeline = [
# "adaptative_threshold",
"simple_threshold",
"remove_previous_mask",
"erode",
"dilate",
"close",
"erode2",
]
mask = img
for i, transformation in enumerate(pipeline):
function = getattr(
planktoscope.segmenter.operations, transformation
) # Retrieves the actual operation
mask = function(mask)
# cv2.imshow(f"mask {transformation}", mask)
# cv2.waitKey(0)
if self.__save_debug_img:
PIL.Image.fromarray(mask).save(
os.path.join(debug_saving_path, f"mask_{i}_{transformation}.jpg")
)
logger.success("Mask created")
return mask
def _get_color_info(self, bgr_img, mask):
# bgr_mean, bgr_stddev = cv2.meanStdDev(bgr_img, mask=mask)
# (b_channel, g_channel, r_channel) = cv2.split(bgr_img)
quartiles = [0, 0.05, 0.25, 0.50, 0.75, 0.95, 1]
# b_quartiles = np.quantile(b_channel, quartiles)
# g_quartiles = np.quantile(g_channel, quartiles)
# r_quartiles = np.quantile(r_channel, quartiles)
hsv_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2HSV)
(h_channel, s_channel, v_channel) = cv2.split(hsv_img)
# hsv_mean, hsv_stddev = cv2.meanStdDev(hsv_img, mask=mask)
h_mean = np.mean(h_channel, where=mask)
s_mean = np.mean(s_channel, where=mask)
v_mean = np.mean(v_channel, where=mask)
h_stddev = np.std(h_channel, where=mask)
s_stddev = np.std(s_channel, where=mask)
v_stddev = np.std(v_channel, where=mask)
# TODO #103 Add skewness and kurtosis calculation (with scipy) here
# using https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skew.html#scipy.stats.skew
# and https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kurtosis.html#scipy.stats.kurtosis
# h_quartiles = np.quantile(h_channel, quartiles)
# s_quartiles = np.quantile(s_channel, quartiles)
# v_quartiles = np.quantile(v_channel, quartiles)
return {
# "object_MeanRedLevel": bgr_mean[2][0],
# "object_MeanGreenLevel": bgr_mean[1][0],
# "object_MeanBlueLevel": bgr_mean[0][0],
# "object_StdRedLevel": bgr_stddev[2][0],
# "object_StdGreenLevel": bgr_stddev[1][0],
# "object_StdBlueLevel": bgr_stddev[0][0],
# "object_minRedLevel": r_quartiles[0],
# "object_Q05RedLevel": r_quartiles[1],
# "object_Q25RedLevel": r_quartiles[2],
# "object_Q50RedLevel": r_quartiles[3],
# "object_Q75RedLevel": r_quartiles[4],
# "object_Q95RedLevel": r_quartiles[5],
# "object_maxRedLevel": r_quartiles[6],
# "object_minGreenLevel": g_quartiles[0],
# "object_Q05GreenLevel": g_quartiles[1],
# "object_Q25GreenLevel": g_quartiles[2],
# "object_Q50GreenLevel": g_quartiles[3],
# "object_Q75GreenLevel": g_quartiles[4],
# "object_Q95GreenLevel": g_quartiles[5],
# "object_maxGreenLevel": g_quartiles[6],
# "object_minBlueLevel": b_quartiles[0],
# "object_Q05BlueLevel": b_quartiles[1],
# "object_Q25BlueLevel": b_quartiles[2],
# "object_Q50BlueLevel": b_quartiles[3],
# "object_Q75BlueLevel": b_quartiles[4],
# "object_Q95BlueLevel": b_quartiles[5],
# "object_maxBlueLevel": b_quartiles[6],
"MeanHue": h_mean,
"MeanSaturation": s_mean,
"MeanValue": v_mean,
"StdHue": h_stddev,
"StdSaturation": s_stddev,
"StdValue": v_stddev,
# "object_minHue": h_quartiles[0],
# "object_Q05Hue": h_quartiles[1],
# "object_Q25Hue": h_quartiles[2],
# "object_Q50Hue": h_quartiles[3],
# "object_Q75Hue": h_quartiles[4],
# "object_Q95Hue": h_quartiles[5],
# "object_maxHue": h_quartiles[6],
# "object_minSaturation": s_quartiles[0],
# "object_Q05Saturation": s_quartiles[1],
# "object_Q25Saturation": s_quartiles[2],
# "object_Q50Saturation": s_quartiles[3],
# "object_Q75Saturation": s_quartiles[4],
# "object_Q95Saturation": s_quartiles[5],
# "object_maxSaturation": s_quartiles[6],
# "object_minValue": v_quartiles[0],
# "object_Q05Value": v_quartiles[1],
# "object_Q25Value": v_quartiles[2],
# "object_Q50Value": v_quartiles[3],
# "object_Q75Value": v_quartiles[4],
# "object_Q95Value": v_quartiles[5],
# "object_maxValue": v_quartiles[6],
}
def _extract_metadata_from_regionprop(self, prop):
return {
"label": prop.label,
# width of the smallest rectangle enclosing the object
"width": prop.bbox[3] - prop.bbox[1],
# height of the smallest rectangle enclosing the object
"height": prop.bbox[2] - prop.bbox[0],
# X coordinates of the top left point of the smallest rectangle enclosing the object
"bx": prop.bbox[1],
# Y coordinates of the top left point of the smallest rectangle enclosing the object
"by": prop.bbox[0],
# circularity : (4π Area)/Perim^2 a value of 1 indicates a perfect circle, a value approaching 0 indicates an increasingly elongated polygon
"circ.": (4 * np.pi * prop.filled_area) / prop.perimeter ** 2,
# Surface area of the object excluding holes, in square pixels (=Area*(1-(%area/100))
"area_exc": prop.area,
# Surface area of the object in square pixels
"area": prop.filled_area,
# Percentage of objects surface area that is comprised of holes, defined as the background grey level
"%area": 1 - (prop.area / prop.filled_area),
# Primary axis of the best fitting ellipse for the object
"major": prop.major_axis_length,
# Secondary axis of the best fitting ellipse for the object
"minor": prop.minor_axis_length,
# Y position of the center of gravity of the object
"y": prop.centroid[0],
# X position of the center of gravity of the object
"x": prop.centroid[1],
# The area of the smallest polygon within which all points in the objet fit
"convex_area": prop.convex_area,
# # Minimum grey value within the object (0 = black)
# "min": prop.min_intensity,
# # Maximum grey value within the object (255 = white)
# "max": prop.max_intensity,
# # Average grey value within the object ; sum of the grey values of all pixels in the object divided by the number of pixels
# "mean": prop.mean_intensity,
# # Integrated density. The sum of the grey values of the pixels in the object (i.e. = Area*Mean)
# "intden": prop.filled_area * prop.mean_intensity,
# The length of the outside boundary of the object
"perim.": prop.perimeter,
# major/minor
"elongation": np.divide(prop.major_axis_length, prop.minor_axis_length),
# max-min
# "range": prop.max_intensity - prop.min_intensity,
# perim/area_exc
"perimareaexc": prop.perimeter / prop.area,
# perim/major
"perimmajor": prop.perimeter / prop.major_axis_length,
# (4 π Area_exc)/perim 2
"circex": np.divide(4 * np.pi * prop.area, prop.perimeter ** 2),
# Angle between the primary axis and a line parallel to the x-axis of the image
"angle": prop.orientation / np.pi * 180 + 90,
# # X coordinate of the top left point of the image
# 'xstart': data_object['raw_img']['meta']['xstart'],
# # Y coordinate of the top left point of the image
# 'ystart': data_object['raw_img']['meta']['ystart'],
# Maximum feret diameter, i.e. the longest distance between any two points along the object boundary
# 'feret': data_object['raw_img']['meta']['feret'],
# feret/area_exc
# 'feretareaexc': data_object['raw_img']['meta']['feret'] / property.area,
# perim/feret
# 'perimferet': property.perimeter / data_object['raw_img']['meta']['feret'],
"bounding_box_area": prop.bbox_area,
"eccentricity": prop.eccentricity,
"equivalent_diameter": prop.equivalent_diameter,
"euler_number": prop.euler_number,
"extent": prop.extent,
"local_centroid_col": prop.local_centroid[1],
"local_centroid_row": prop.local_centroid[0],
"solidity": prop.solidity,
}
def _stream(self, img):
def pipe_full(conn):
r, w, x = select.select([], [conn], [], 0.0)
return len(w) == 0
img_object = io.BytesIO()
PIL.Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)).save(
img_object, format="JPEG"
)
logger.debug("Sending the object in the pipe!")
if not pipe_full(planktoscope.segmenter.streamer.sender):
planktoscope.segmenter.streamer.sender.send(img_object)
def _slice_image(self, img, name, mask, start_count=0):
"""Slice a given image using give mask
Args:
img (img array): Image to slice
name (string): name of the original image
mask (mask binary array): mask to use slice with
start_count (int, optional): count start to number the objects, so each one is unique. Defaults to 0.
Returns:
tuple: (Number of saved objects, original number of objects before size filtering)
"""
def __augment_slice(dim_slice, max_dims, size=10):
# transform tuple in list
dim_slice = list(dim_slice)
# dim_slice[0] is the vertical component
# dim_slice[1] is the horizontal component
# dim_slice[1].start,dim_slice[0].start is the top left corner
for i in range(2):
if dim_slice[i].start < size:
dim_slice[i] = slice(0, dim_slice[i].stop)
else:
dim_slice[i] = slice(dim_slice[i].start - size, dim_slice[i].stop)
# dim_slice[1].stop,dim_slice[0].stop is the bottom right corner
for i in range(2):
if dim_slice[i].stop + size == max_dims[i]:
dim_slice[i] = slice(dim_slice[i].start, max_dims[i])
else:
dim_slice[i] = slice(dim_slice[i].start, dim_slice[i].stop + size)
# transform back list in tuple
dim_slice = tuple(dim_slice)
return dim_slice
minMesh = self.__global_metadata.get("acq_minimum_mesh", 20) # microns
minESD = minMesh * 2
minArea = math.pi * (minESD / 2) * (minESD / 2)
2021-10-29 13:49:20 +02:00
pixel_size = self.__global_metadata.get("process_pixel", 1.0)
# minsizepix = minArea / pixel_size / pixel_size
minsizepix = (minESD / pixel_size) ** 2
labels, nlabels = skimage.measure.label(mask, return_num=True)
regionprops = skimage.measure.regionprops(labels)
regionprops_filtered = [
region for region in regionprops if region.bbox_area >= minsizepix
]
object_number = len(regionprops_filtered)
logger.debug(f"Found {nlabels} labels, or {object_number} after size filtering")
for (i, region) in enumerate(regionprops_filtered):
region.label = i + start_count
# Publish the object_id to via MQTT to Node-RED
self.segmenter_client.client.publish(
"status/segmenter/object_id",
f'{{"object_id":"{region.label}"}}',
)
# First extract to get all the metadata about the image
obj_image = img[region.slice]
colors = self._get_color_info(obj_image, region.filled_image)
metadata = self._extract_metadata_from_regionprop(region)
# Second extract to get a bigger image for saving
obj_image = img[__augment_slice(region.slice, labels.shape, 10)]
object_id = f"{name}_{i}"
object_fn = os.path.join(self.__working_obj_path, f"{object_id}.jpg")
self._save_image(obj_image, object_fn)
self._stream(obj_image)
if self.__save_debug_img:
self._save_mask(
region.filled_image,
os.path.join(self.__working_debug_path, f"obj_{i}_mask.jpg"),
)
object_metadata = {
"name": f"{object_id}",
"metadata": {**metadata, **colors},
}
# publish metrics about the found object
self.segmenter_client.client.publish(
"status/segmenter/metric",
json.dumps(
object_metadata, cls=planktoscope.segmenter.encoder.NpEncoder
),
)
if "objects" in self.__global_metadata:
self.__global_metadata["objects"].append(object_metadata)
else:
self.__global_metadata.update({"objects": [object_metadata]})
if self.__save_debug_img:
if object_number:
for region in regionprops_filtered:
tagged_image = cv2.drawMarker(
img,
(int(region.centroid[1]), int(region.centroid[0])),
(0, 0, 255),
cv2.MARKER_CROSS,
)
tagged_image = cv2.rectangle(
tagged_image,
pt1=region.bbox[-3:-5:-1],
pt2=region.bbox[-1:-3:-1],
color=(150, 0, 200),
thickness=1,
)
contours, hierarchy = cv2.findContours(
np.uint8(region.image),
mode=cv2.RETR_TREE, # RETR_FLOODFILL or RETR_EXTERNAL
method=cv2.CHAIN_APPROX_NONE,
)
tagged_image = cv2.drawContours(
tagged_image,
contours,
-1,
(238, 130, 238),
thickness=1,
offset=(region.bbox[1], region.bbox[0]),
)
self._save_image(
tagged_image,
os.path.join(self.__working_debug_path, "tagged.jpg"),
)
else:
self._save_image(
img,
os.path.join(self.__working_debug_path, "tagged.jpg"),
)
return (object_number, len(regionprops))
def _pipe(self, ecotaxa_export):
logger.info("Finding images")
images_list = self._find_files(
self.__working_path, ("JPG", "jpg", "JPEG", "jpeg")
)
logger.debug(f"Images found are {images_list}")
images_count = len(images_list)
2021-10-18 12:44:47 +02:00
if images_count == 0:
logger.error(
"There is no image to run the segmentation on. Please check your selection."
)
raise FileNotFoundError
else:
logger.debug(f"We found {images_count} images, good luck!")
first_start = time.monotonic()
self.__mask_to_remove = None
average = 0
total_objects = 0
average_objects = 0
recalculate_flat = True
# TODO check image list here to find if a flat exists
# we recalculate the flat every 10 pictures
if recalculate_flat:
recalculate_flat = False
self.segmenter_client.client.publish(
"status/segmenter", '{"status":"Calculating flat"}'
)
if images_count < 10:
self._calculate_flat(
images_list[0:images_count], images_count, self.__working_path
)
else:
self._calculate_flat(images_list[0:10], 10, self.__working_path)
if self.__save_debug_img:
self._save_image(
self.__flat,
os.path.join(self.__working_debug_path, "flat_color.jpg"),
)
average_time = 0
# TODO here would be a good place to parallelize the computation
for (i, filename) in enumerate(images_list):
name = os.path.splitext(filename)[0]
# Publish the object_id to via MQTT to Node-RED
self.segmenter_client.client.publish(
"status/segmenter",
f'{{"status":"Segmenting image {filename}, image {i+1}/{images_count}"}}',
)
# we recalculate the flat if the heuristics detected we should
if recalculate_flat: # not i % 10 and i < (images_count - 10)
recalculate_flat = False
if len(images_list) == 10:
# We are too close to the end of the list, take the previous 10 images instead of the next 10
flat = self._calculate_flat(images_list, 10, self.__working_path)
elif i > (len(images_list) - 11):
# We are too close to the end of the list, take the previous 10 images instead of the next 10
flat = self._calculate_flat(
images_list[i - 10 : i], 10, self.__working_path
)
else:
flat = self._calculate_flat(
images_list[i : i + 10], 10, self.__working_path
)
if self.__save_debug_img:
self._save_image(
self.__flat,
os.path.join(
os.path.dirname(self.__working_debug_path),
f"flat_color_{i}.jpg",
),
)
self.__working_debug_path = os.path.join(
self.__debug_objects_root,
self.__working_path.split(self.__img_path)[1].strip(),
name,
)
logger.debug(f"The debug objects path is {self.__working_debug_path}")
# Create the debug objects path if needed
if self.__save_debug_img and not os.path.exists(self.__working_debug_path):
# create the path!
os.makedirs(self.__working_debug_path)
start = time.monotonic()
logger.info(f"Starting work on {name}, image {i+1}/{images_count}")
img = self._open_and_apply_flat(
os.path.join(self.__working_path, images_list[i]), self.__flat
)
# logger.debug(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss)
# logger.debug(time.monotonic() - start)
# start = time.monotonic()
# logger.debug(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss)
mask = self._create_mask(img, self.__working_debug_path)
# logger.debug(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss)
# logger.debug(time.monotonic() - start)
# start = time.monotonic()
# logger.debug(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss)
objects_count, _ = self._slice_image(img, name, mask, total_objects)
total_objects += objects_count
# Simple heuristic to detect a movement of the flow cell and a change in the resulting flat
2021-10-18 12:44:47 +02:00
# TODO: this heuristic should be improved or removed if deemed unnecessary
if average_objects != 0 and objects_count > average_objects + 20:
2021-10-18 12:44:47 +02:00
# FIXME: this should force a new slice of the current image
logger.debug(
f"We need to recalculate a flat since we have {objects_count} new objects instead of the average of {average_objects}"
)
recalculate_flat = True
average_objects = (average_objects * i + objects_count) / (i + 1)
# logger.debug(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss)
# logger.debug(time.monotonic() - start)
delay = time.monotonic() - start
average_time = (average_time * i + delay) / (i + 1)
logger.success(
f"Work on {name} is OVER! Done in {delay}s, average time is {average_time}s, average number of objects is {average_objects}"
)
logger.success(
f"We also found {objects_count} objects in this image, at a rate of {objects_count / delay} objects per second"
)
logger.success(f"So far we found {total_objects} objects")
total_duration = (time.monotonic() - first_start) / 60
logger.success(
f"{images_count} images done in {total_duration} minutes, or an average of {average_time}s per image or {total_duration*60/images_count}s per image"
)
logger.success(
f"We also found {total_objects} objects, or an average of {total_objects / (total_duration * 60)}objects per second"
)
if ecotaxa_export:
if "objects" in self.__global_metadata:
if planktoscope.segmenter.ecotaxa.ecotaxa_export(
self.__archive_fn,
self.__global_metadata,
self.__working_obj_path,
keep_files=True,
):
logger.success("Ecotaxa archive export completed for this folder")
else:
logger.error("The ecotaxa export could not be completed")
else:
logger.info("There are no objects to export")
else:
logger.info(
"We are not creating the ecotaxa output archive for this folder"
)
# cleanup
# we're done free some mem
self.__flat = None
def segment_all(self, paths: list, force=False, ecotaxa_export=True):
"""Starts the segmentation in all the folders given recursively
Args:
paths (list): path list to recursively explore.
force (bool, optional): force the rework on all paths given. Defaults to False.
ecotaxa_export (bool, optional): generates ecotaxa export data. Defaults to True.
"""
img_paths = []
for path in paths:
for x in os.walk(path):
if x[0] not in img_paths:
img_paths.append(x[0])
self.segment_list(img_paths, force, ecotaxa_export)
def segment_list(self, path_list: list, force=False, ecotaxa_export=True):
"""Starts the segmentation in the folders given
Args:
paths (list): path list to recursively explore.
force (bool, optional): force the rework on all paths given. Defaults to False.
ecotaxa_export (bool, optional): generates ecotaxa export data. Defaults to True.
"""
logger.info(f"The pipeline will be run in {len(path_list)} directories")
logger.debug(f"Those are {path_list}")
2021-10-18 12:44:47 +02:00
self.__process_uuid = planktoscope.uuidName.uuidMachine(
machine=planktoscope.uuidName.getSerial()
)
if self.__process_id == "":
self.__process_id = self.__process_uuid
logger.info(f"The process_uuid of this run is {self.__process_uuid}")
logger.info(f"The process_id of this run is {self.__process_id}")
exception = None
for path in path_list:
logger.debug(f"{path}: Checking for the presence of metadata.json")
if os.path.exists(os.path.join(path, "metadata.json")):
# The file exists, let's check if we force or not
# we also need to check for the presence of done.txt in each folder
logger.debug(
f"{path}: Checking for the presence of done.txt or forcing({force})"
)
if os.path.exists(os.path.join(path, "done.txt")) and not force:
logger.debug(
f"Moving to the next folder, {path} has already been segmented"
)
else:
# forcing, let's gooooo
2021-10-18 12:44:47 +02:00
try:
self.segment_path(path, ecotaxa_export)
except Exception as e:
logger.error(f"There was an error while segmenting {path}")
exception = e
else:
logger.debug(f"Moving to the next folder, {path} has no metadata.json")
2021-10-18 12:44:47 +02:00
if exception is None:
# Publish the status "Done" to via MQTT to Node-RED
self.segmenter_client.client.publish(
"status/segmenter", '{"status":"Done"}'
)
else:
self.segmenter_client.client.publish(
"status/segmenter",
f'{{"status":"An exception was raised during the segmentation: {exception}."}}',
2021-10-18 12:44:47 +02:00
)
# Reset process_id
self.__process_id = ""
def segment_path(self, path, ecotaxa_export):
"""Starts the segmentation in the given path
Args:
path (string): path of folder to do segmentation in
"""
logger.info(f"Loading the metadata file for {path}")
with open(os.path.join(path, "metadata.json"), "r") as config_file:
self.__global_metadata = json.load(config_file)
logger.debug(f"Configuration loaded is {self.__global_metadata}")
# Remove all the key,value pairs that don't start with acq, sample, object or process (for Ecotaxa)
self.__global_metadata = dict(
filter(
lambda item: item[0].startswith(("acq", "sample", "object", "process")),
self.__global_metadata.items(),
)
)
project = self.__global_metadata["sample_project"].replace(" ", "_")
sample = self.__global_metadata["sample_id"].replace(" ", "_")
2021-10-18 12:44:47 +02:00
date = datetime.datetime.utcnow().isoformat()
self.__global_metadata["process_datetime"] = date
self.__global_metadata["process_uuid"] = self.__process_uuid
self.__global_metadata["process_id"] = f"{project}_{sample}_{self.__process_id}"
# TODO Make this dynamic: if we change operations order and/or parameters, we need to make this evolve.
self.__global_metadata["process_1st_operation"] = {
"type": "remove_background",
"parameters": {"type": "flat"},
}
self.__global_metadata["process_2nd_operation"] = {
"type": "simple_threshold",
"parameters": {"algorithm": "THRESH_TRIANGLE"},
}
self.__global_metadata["process_3rd_operation"] = {
"type": "remove_previous_mask",
"parameters": {},
}
self.__global_metadata["process_4th_operation"] = {
"type": "erode",
"parameters": {"kernel_size": 2, "kernel_shape": "rectangle"},
}
self.__global_metadata["process_5th_operation"] = {
"type": "dilate",
"parameters": {"kernel_size": 8, "kernel_shape": "ellipse"},
}
self.__global_metadata["process_6th_operation"] = {
"type": "close",
"parameters": {"kernel_size": 8, "kernel_shape": "ellipse"},
}
self.__global_metadata["process_7th_operation"] = {
"type": "erode",
"parameters": {"kernel_size": 8, "kernel_shape": "ellipse"},
}
# Define the name of the .zip file that will contain the images and the .tsv table for EcoTaxa
self.__archive_fn = os.path.join(
self.__ecotaxa_path,
# filename includes project name, timestamp and sample id
f"ecotaxa_{project}_{date}_{sample}.zip",
# TODO #102 sanitize the filename to remove potential problems with spaces and special characters
)
self.__working_path = path
# recreate the subfolder img architecture of this folder inside objects
# when we split the working path with the base img path, we get the date/sample architecture back
# os.path.relpath("/home/pi/data/img/2020-10-17/5/5","/home/pi/data/img/") => '2020-10-17/5/5'
sample_path = os.path.relpath(self.__working_path, self.__img_path)
logger.debug(f"base obj path is {self.__objects_root}")
logger.debug(f"sample path is {sample_path}")
self.__working_obj_path = os.path.join(self.__objects_root, sample_path)
logger.debug(f"The working objects path is {self.__working_obj_path}")
self.__working_debug_path = os.path.join(self.__debug_objects_root, sample_path)
logger.debug(f"The debug objects path is {self.__working_debug_path}")
# Create the paths
for path in [self.__working_obj_path, self.__working_debug_path]:
if not os.path.exists(path):
# create the path!
os.makedirs(path)
logger.debug(f"The archive folder is {self.__archive_fn}")
logger.info(f"Starting the pipeline in {path}")
try:
self._pipe(ecotaxa_export)
except Exception as e:
logger.exception(f"There was an error in the pipeline {e}")
2021-10-18 12:44:47 +02:00
raise e
# Add file 'done' to path to mark the folder as already segmented
with open(os.path.join(self.__working_path, "done.txt"), "w") as done_file:
done_file.writelines(datetime.datetime.utcnow().isoformat())
logger.info(f"Pipeline has been run for {path}")
2021-10-18 12:44:47 +02:00
return True
@logger.catch
def treat_message(self):
last_message = {}
if self.segmenter_client.new_message_received():
logger.info("We received a new message")
last_message = self.segmenter_client.msg["payload"]
logger.debug(last_message)
self.segmenter_client.read_message()
if "action" in last_message:
# If the command is "segment"
if last_message["action"] == "segment":
# {"action":"segment"}
if "settings" in last_message:
2021-10-18 12:44:47 +02:00
# force rework of already done folder
force = (
last_message["settings"]["force"]
if "force" in last_message
else False
)
# parse folders recursively starting from the given parameter
recursive = (
last_message["settings"]["recursive"]
if "recursive" in last_message
else True
)
# generate ecotaxa output archive
ecotaxa_export = (
last_message["settings"]["ecotaxa"]
if "ecotaxa" in last_message
else True
)
if "keep" in last_message["settings"]:
# keep debug images
self.__save_debug_img = last_message["settings"]["keep"]
2021-10-18 12:44:47 +02:00
if "process_id" in last_message["settings"]:
# keep debug images
self.__process_id = last_message["settings"]["process_id"]
# TODO eventually add customisation to segmenter parameters here
2021-10-18 12:44:47 +02:00
path = last_message["path"] if "path" in last_message else None
# Publish the status "Started" to via MQTT to Node-RED
self.segmenter_client.client.publish(
"status/segmenter", '{"status":"Started"}'
)
if path:
if recursive:
self.segment_all(path, force, ecotaxa_export)
else:
self.segment_list(path, force, ecotaxa_export)
else:
self.segment_all(self.__img_path, force, ecotaxa_export)
elif last_message["action"] == "stop":
logger.info("The segmentation has been interrupted.")
# Publish the status "Interrupted" to via MQTT to Node-RED
self.segmenter_client.client.publish(
"status/segmenter", '{"status":"Interrupted"}'
)
elif last_message["action"] == "update_config":
logger.error(
"We can't update the configuration while we are segmenting."
)
# Publish the status "Interrupted" to via MQTT to Node-RED
self.segmenter_client.client.publish(
"status/segmenter", '{"status":"Busy"}'
)
elif last_message["action"] != "":
logger.warning(
f"We did not understand the received request {last_message}"
)
################################################################################
# While loop for capturing commands from Node-RED
################################################################################
@logger.catch
def run(self):
"""This is the function that needs to be started to create a thread"""
logger.info(
f"The segmenter control thread has been started in process {os.getpid()}"
)
# MQTT Service connection
self.segmenter_client = planktoscope.mqtt.MQTT_Client(
topic="segmenter/#", name="segmenter_client"
)
# Publish the status "Ready" to via MQTT to Node-RED
self.segmenter_client.client.publish("status/segmenter", '{"status":"Ready"}')
logger.info("Setting up the streaming server thread")
address = ("", 8001)
fps = 0.5
refresh_delay = 3 # was 1/fps
handler = functools.partial(
planktoscope.segmenter.streamer.StreamingHandler, refresh_delay
)
try:
server = planktoscope.segmenter.streamer.StreamingServer(address, handler)
except Exception as e:
logger.exception(
f"An exception has occured when starting up the segmenter: {e}"
)
raise e
self.streaming_thread = threading.Thread(
target=server.serve_forever, daemon=True
)
# start streaming only when needed
self.streaming_thread.start()
logger.success("Segmenter is READY!")
# This is the loop
while not self.stop_event.is_set():
self.treat_message()
time.sleep(0.5)
logger.info("Shutting down the segmenter process")
planktoscope.segmenter.streamer.sender.close()
self.segmenter_client.client.publish("status/segmenter", '{"status":"Dead"}')
self.segmenter_client.shutdown()
logger.success("Segmenter process shut down! See you!")
# This is called if this script is launched directly
if __name__ == "__main__":
# TODO This should be a test suite for this library
pass