In order to make it easy to connect to the PlanktoScope, you may want to install [avahi](https://en.wikipedia.org/wiki/Avahi_%28software%29) or the [Bonjour](https://en.wikipedia.org/wiki/Bonjour_%28software%29) service on any computer you will use to access the PlanktoScope interface. This will allow you to connect to the PlantoScop using an address similar such as http://planktoscope.local instead of an IP address.
The latest Raspbian version can always be downloaded from [the Raspberry Pi Downloads page](https://www.raspberrypi.org/downloads/raspbian/).
For a first build, it's recommende to download an image of Raspbian Buster with desktop.
#### Writing an image to the SD card
Download the latest version of [balenaEtcher](https://www.balena.io/etcher/) and install it.
Connect an SD card reader with the micro SD card inside.
Open balenaEtcher and select from your hard drive the image zip file you just downloaded.
Select the SD card you want to write your image to.
Review your selections and click `Flash!` to begin writing data to the SD card.
#### Prepare your Raspberry Pi
[Getting Started with your Raspberry Pi](https://projects.raspberrypi.org/en/projects/raspberry-pi-getting-started/)
Plug the SD Card in your Raspberry Pi and connect your Pi to a screen, mouse and a keyboard. Check the connection twice before plugging the power.
The first boot to the desktop may take up to 120 seconds. This is normal and is caused by the image expanding the filesystem to the whole SD card. DO NOT REBOOT before you reach the desktop.
#### Finish the setup
Make sure you have access to internet and update/upgrade your fresh Raspbian install.
Update your Pi first. Open up a terminal, and do the following:
While you're here, a wise thing to do would be to change the default password for the `pi` user. This is very warmly recommended if your PlanktoScope is connected to a shared network you do not control. Just select the first option `1 System Options`, the `S3 Password`.
You may also want to change the default hostname of your Raspberry. To do so, choose option `1 System Options` then `S4 Hostname`. Choose a new hostname. We recommend using `planktoscope` as this name will then appear.
Last steps we need to do is to increase the amount of memory available to the GPU. Select `4 Performance Options`, then `P2 GPU Memory`. Write `256` in the field and choose OK.
Also, to be able to use the ISO8601 datetime standard, we need to change the locale in use. Choose `5 Localisations Options`, then `L1 Locale` and press space after selecting the `en_DK.UTF8`. Press Enter and then select the en_DK locale as default for your system.
!!!info
The en_DK is a hack where month and day names are in English, but date and time format uses the ISO8601 format. See https://serverfault.com/questions/17118/how-do-i-set-the-date-format-to-iso-globally-in-linux
These steps can also be done from the Raspberry Pi Configuration GUI tool that you can find in `Main Menu > Preferences`. Go to the `Interfaces` tab. Pay attention, here the Serial Port must be enabled, but the Serial Port Console must be disabled.
We are first going to make sure that your PlanktoScope receives proper PPS signal. We need to add the following line at the end of `/boot/config.txt`. Open the file with `sudo nano /boot/config.txt` and add the following at the end:
```
# Pi overclock
over_voltage=6
arm_freq=2000
```
Those settings were verified to be stable, but if you notice any weird behavior under a high load, remove those lines.
You can then run the following to make sure your Raspberry has the necessary components to install and build everything it needs and to create the necessary folders:
Start by following [Adafruit's guide](https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi). You can start at the chapter `Install Python Libraries`.
It is recommended to test this setup by creating this small script under the name `test/blinkatest.py` and running it (you can use the editor nano if you are using the terminal). If you are using the image provided, you may find that the script is already there.
The device appearing at addresses 60 and 70 is our motor controller. Address `0d` is the fan controller and `3c` is the oled screen (we'll set up both a bit further down). Your version of the RGB Cooling Hat may not have the screen, it's fine as the screen is not necessary for proper operation of the Planktoscope.
In case the motor controller does not appear, shutdown your Planktoscope and check the wiring. If your board is using a connector instead of a soldered pin connection (as happens with the Adafruit Bonnet Motor Controller), sometimes the pins on the male side need to be bent a little to make good contact. In any case, do not hesitate to ask for help in Slack.
If the GPS works, you should now see NMEA sentences scrolling:
```
$GPGGA,000908.799,,,,,0,00,,,M,,M,,*7E
$GPGSA,A,1,,,,,,,,,,,,,,,*1E
$GPGSV,1,1,00*79
$GPRMC,000908.799,V,,,,,0.00,0.00,060180,,,N*44
$GPVTG,0.00,T,,M,0.00,N,0.00,K,N*32
$GPGGA,000909.799,,,,,0,00,,,M,,M,,*7F
$GPGSA,A,1,,,,,,,,,,,,,,,*1E
$GPRMC,000909.799,V,,,,,0.00,0.00,060180,,,N*45
$GPVTG,0.00,T,,M,0.00,N,0.00,K,N*32
$GPGGA,000910.799,,,,,0,00,,,M,,M,,*77
$GPGSA,A,1,,,,,,,,,,,,,,,*1E
$GPRMC,000910.799,V,,,,,0.00,0.00,060180,,,N*4D
$GPVTG,0.00,T,,M,0.00,N,0.00,K,N*32
```
Until you get a GPS fix, most of the sentences are empty (see the lines starting with GPGSA and with lot of commas).
We are going to use gpsd to parse the GPS data. We need to set it up by editing `/etc/default/gpsd`. This file is source just before starting gpsd and allows to configure its working.
```sh
sudo nano /etc/default/gpsd
```
Change the `USB_AUTO` line to read `false`
```sh
USBAUTO="false"
```
Also change the `DEVICES` line to add the device we are going to use `/dev/serial0`:
The Adafruit GPS HAT allows your PlanktoScope to automatically sets its time to the GPS received one. Moreover, since the PPS (Pulse Per Second) output is activated, you can even set your PlanktoScope to act as a stratum 1 timeserver.
We are first going to make sure that your PlanktoScope receives proper PPS signal. We need to add the following line at the end of `/boot/config.txt`:
```
sudo nano /boot/config.txt
# Add the following line at the end of the line
dtoverlay=pps-gpio,gpiopin=4
```
We also need to activate the pps module of the kernel, by editing `/etc/modules`:
```
sudo nano /etc/modules
# Add the following line at the end of the line
pps-gpio
```
Now install `pps-tools` so we can check that this is properly running.
```sh
sudo apt install pps-tools
```
Finally, in the `/etc/default/gpsd` file, we need to add our pps device to the line `DEVICES`. Append `/dev/pps0`:
```sh
DEVICES="/dev/serial0 /dev/pps0"
```
Reboot your PlanktoScope now and check that the PPS signal is properly parsed by the PlanktoScope. You can do this by running `sudo ppstest /dev/pps0`:
`gpsmon` should also show a PPS signal in the `GSA + PPS` box.
We now need to install the software that will act as timeserver, both locally and globally. Its name is Chrony. It's a more modern replacement for `ntp`, using the same underlying protocol. Let's go ahead and install it:
```sh
sudo apt install chrony
```
We need to edit the configuration of chrony, to activate both the GPS time synchronization and to allow clients to request time updates directly from our microscope.
Edit the file `/etc/chrony/chrony.conf` and replace its content with the following:
Before restarting `chrony`, we need to make sure the timesync service from systemd is deactivated:
```sh
sudo systemctl stop systemd-timesyncd.service
sudo systemctl disable systemd-timesyncd.service
```
Final step, let's start `chrony` with its new configuration and restart `gpsd`:
```sh
sudo systemctl restart chrony
sudo systemctl restart gpsd
```
To check that everything is working as intended, wait a few minutes, and then type `chronyc sources -v`. This command will show the time sources `chrony` is using, and right at the top there should be our NMEA source. Make sure its line starts with `#*`, which means this source is selected:
The other servers are here just as fallback measures, in case the GPS is not working for an unknown reason.
This part is now complete! Everytime you start your Planktoscope, it will set its own time after a few minutes (once a GPS signal is acquired).
The ultimate step will have to be done on the other equipment on the network where you want to use this time source. You will need to add the line `server planktoscope.local` to your ntp configuration file either at `/etc/ntp.conf` or at `/etc/chrony/chrony.conf` and then restart your ntp service.
You can find more information in this hardware module in Adafruit documentation at [Installing Adafruit GPS HAT](https://learn.adafruit.com/adafruit-ultimate-gps-hat-for-raspberry-pi/overview) or on this page to [use Python Thread with GPS HAT](http://www.danmandle.com/blog/getting-gpsd-to-work-with-python/)
### Install RGB Cooling HAT
To setup the RGB Cooling HAT, you just need to clone and build the WiringPi library:
We need to install the latest OpenCV version. Unfortunately, it is not available in the repositories. We are going to install it directly by using pip.
First, we need to install the needed dependencies, then we will directly install opencv:
More detailed information can be found on this [website](https://www.pyimagesearch.com/2019/09/16/install-opencv-4-on-raspberry-pi-4-and-raspbian-buster/).
To install Node.js, npm and Node-RED onto a Raspberry Pi, you just need to run the following command. You can review the content of this script [here](https://raw.githubusercontent.com/node-red/linux-installers/master/deb/update-nodejs-and-nodered).
To run Node-RED when the Pi is turned on or restarted, you need to enable the systemd service by running this command:
```sh
sudo systemctl enable nodered.service
```
You can now start Node-RED by running the following:
```sh
sudo systemctl start nodered.service
```
#### Check the installation
Make sure Node-RED is correctly installed by reaching the following page from the browser of your pi http://localhost:1880 or http://planktoscope.local:1880 from another computer on the same network.
#### Install the necessary nodes and activate necessary features
We are going to activate the Projects feature of Node-Red as this will help us manage and track changes to the flows. Open the file `settings.js` with an editor (for example with `nano ~/.node-red/settings.js`) so we can change the following lines (you can use `CTRL+_` to quickly navigate to the line indicated):
- Line 75: uncomment the line (remove the //) that ends with flowFilePretty: true,
- Line 337: set enabled to true
Restart Node-RED to take into account those changes:
We need to move the PlanktoScope folder in the right place, in the `projects` subfolder of Node-Red and link this new folder to our `/home/`. To do so, in the terminal type the following::
The final step before restarting node-red is to link the projects directory from within node-red folder to our main home directory. To do so, just open a terminal and type the following:
You can now restart the nodered service:
```
sudo systemctl restart nodered.service
```
#### Import the last GUI
If you now open the Node-Red GUI in your browser, it will ask you to setup the project, an email and a username (so if you make changes to the flow and want to share them we can know who made them).
Open your browser and navigate to http://planktoscope.local:1880. In the prompt, select `Open existing project` button at the bottom, choose the PlanktoScope project and click on `Open Project`. Eventually, merge the proposed changes.